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一、均匀平面波在边界面的分析

均匀平面波对分界面的入射总共可分为以下八种情况：

①从理想介质垂直入射理想导体

②从理想介质垂直入射理想介质

③从理想介质垂直入射导电媒质

④从导电媒质垂直入射导电媒质

⑤从理想介质斜入射理想导体

⑥从理想介质斜入射理想介质

⑦从理想介质斜入射导电媒质

⑧从导电媒质斜入射导电媒质

其中④⑧由于少见且困难，在此不做讨论。

由于垂直入射时电磁波的传播方向和法线重合，所以无法判断出分界面。所以我们人为假定电磁波的电场

时沿x轴方向的线极化电场，分界面为yOz平面，所以假设垂直入射时电磁波为垂直极化波。

下面将详细分析六种情况的各种问题解。

1、求均匀平面波表达式

（1）情况①、②、③

假设均匀平面波入射方向为z轴正方向，则令：

→Ei = →exEime
−jβ1z

则：

→Hi =
1

Z1
→ez × →Ei = →ey

Eim

Z1
e−jβ1z

（2）情况⑤、⑥、⑦

先考察相位因子，e−jk = e−jβki = e−jβ(zcosθi+xsinθi)，其中ki表示电磁波的行进方向。

对于垂直极化波：

→Ei = →eyEime
−jβ1(zcosθi+xsinθi)

对于平行极化波：

→Hi = →ey
Eim

Z1
e−jβ1(zcosθi+xsinθi)

2、计算反射、透射系数

（1）情况①

→Hi =
1

Z1
( →ezcosθi + →exsinθi) × →Ei =

Eim

Z1
( →ez × →eycosθi + →ex × →eysinθi)e

−jβ1(zcosθi+xsinθi)

= (− →excosθi + →ezsinθi)
Eim

Z1
e−jβ1(zcosθi+xsinθi)

→Ei = Z1
→Hi × ( →ezcosθi + →exsinθi) = →ey × ( →ezcosθi + →exsinθi)Eime

−jβ1(zcosθi+xsinθi)

= ( →excosθi − →ezsinθi)Eime
−jβ1(zcosθi+xsinθi)



由于理想导体中不存在电场，所以也不存在磁场，因此，这种情况下的透射系数为0。
由于是垂直入射，所以：cosθi = cosθr = 1 因为媒质2为理想介质，所以Z2 = 0。计算反射系数:

Γ⊥ =
Er

Ei

=
Z2 cos θi − Z1 cos θt
Z2 cos θi + Z1 cos θt

=
0 × 1 − Z1 × 1

0 × 1 + Z1 × 1
=

−Z1

Z1
= −1

而因为没有透射，所以透射系数：

τ⊥ = 0

（2）情况②、③

对于情况②③，其实本质上没有特别大的区别。最明显的区别就是在计算Z2时，不再是Z2 = √ μ
ε而是

Z2 = √ μ

εc
，其中εc = ε0 − j σ

ω
。这个复介电常数的意义在于在导电媒质中传播会产生损耗。

Γ⊥ =
Er

Ei

=
Z2 cos θi − Z1 cos θt
Z2 cos θi + Z1 cos θt

=
Z2 × 1 − Z1 × 1

Z2 × 1 + Z1 × 1
=

Z2 − Z1

Z2 + Z1

τ⊥ =
→Et

→Ei

=
2Z2cosθi

Z2cosθi + Z1cosθt
=

2Z2

Z2 + Z1

（3）情况⑤

为了节省篇幅，后面斜入射的情况只对垂直极化波做分析，往后反射系数和透射系数就省略下标。

Γ⊥ =
Er

Ei

=
Z2 cos θi − Z1 cos θt
Z2 cos θi + Z1 cos θt

=
0 × cosθi − Z1cosθt

0 × cosθi + Z1cosθt
= −1

τ⊥ = 0

（4）情况⑥、⑦

斜入射的cosθi和cos θt未知：

Γ⊥ =
Er

Ei

=
Z2 cos θi − Z1 cos θt
Z2 cos θi + Z1 cos θt

τ⊥ =
→Et

→Ei

=
2Z2cosθi

Z2cosθi + Z1cosθt

3、求反射、透射波

（1）情况①

反射后电磁波传播方向变为z轴负方向即ejβz，反射波幅值Erm = Eim × Γ⊥ = −Eim。所以反射波电场为：

→Er = − →exEime
jβ1z

反射波磁场为：

→Hr =
1

Z1
→en × →Er = −

1

Z1
→ez × →Er = →ey

Eim

Z1
ejβ1z

因为没有透射，所以 →Et = →Ht = 0

（2）情况②、③

同样的，反射波传播方向反向后变为ejβz。

反射波电场：



→Er = →exΓEime
jβ1z

反射波磁场：

→Hr =
1

Z1
→en × →Er = −

1

Z1
→ez × →Er = − →ey

ΓEim

Z1
ejβ1z

透射波电场：

→Et = →exτEime
−jβ2z

透射波磁场：

→Ht = →ey
τEim

Z1
e−jβ2z

（3）情况⑤

反射之后反射波传播方向发生改变，相位因子也发生改变为e−jβ1(−zcosθr+xsinθr)

反射波电场：

→Er = →eyΓEime
−jβ1(−zcosθr+xsinθr) = − →eyEime

−jβ1(−zcosθr+xsinθr)

反射波磁场：

→Hr =
1

Z1
→en × →Er =

1

Z1
(− →ezcosθr + →exsinθr) × →Er = (− →excosθr − →ezsinθr)

Eim

Z1
e−jβ1(−zcosθr+xsinθr)

事实上把cosθr换为cosθi也是可以的。

（4）情况⑥、⑦

相位因子变化为e−jβ1(−zcosθr+xsinθr)。

反射波电场：

→Er = →eyΓEime
−jβ1(−zcosθr+xsinθr)

反射波磁场：

→Hr =
1

Z1
→en × →Er =

1

Z1
(− →ezcosθr + →exsinθr) × →Er = ( →excosθr + →ezsinθr)

ΓEim

Z1
e−jβ1(−zcosθr+xsinθr)

相位因子变化为e−jβ2(zcosθt+xsinθt)。

透射波电场：

→Et = →eyτEime
−jβ2(zcosθt+xsinθt)

透射波磁场：

→Ht = ( →ezcosθt + →exsinθt) × →ey
1

Z1
τEime

−jβ2(zcosθt+xsinθt) = ( →ezsinθt − →excosθt)
τEim

Z1
e−jβ2(zcosθt+xsinθt)

4、计算媒质中的合场：

（1）情况①

媒质1中的电场：

→E1 = →Ei + →Er = →exEime
−jβ1z − →exEime

jβ1z = →exEimRe[e−j(β1z−ωt) − ej(β1z+ωt)]

= →exEim(cos(ωt − β1z) − cos(ωt + β1z)) = →ex2Eimsin(ωt)sin(β1z)



可以看出来这种情况下媒质1中的电场为驻波。
类似的，媒质1中的磁场：

可以看出来这种情况下媒质1中的磁场也为驻波形式。

（2）情况②、③

媒质1中的电场：

媒质1中的磁场：

此处就不带入Γ的值了，可以看出这种情况媒质1中的电场和磁场不再是单纯的驻波，而是行驻波。

（3）情况⑤

媒质1中的电场：

可以看出来电场在x轴方向成驻波分布，在z轴成行波分布。

媒质1中的磁场：

同样的磁场在x轴方向成驻波分布，在z轴方向成行波分布。

（4）情况⑥、⑦

→H1 = →Hi + →Hr = →ey
Eim

Z1
e−jβ1z + →ey

Eim

Z1
ejβ1z = →ey

Eim

Z1
(e−jβ1z + ejβ1z)

= →ey
Eim

Z1
Re[e−j(β1z−ωt) + ej(β1z+ωt)] = →ey

Eim

Z1
(cos(ωt − β1z) + cos(ωt + β1z))

= →ey
2Eim

Z1
cos(ωt)cos(β1z)

→E1 = →Ei + →Er = →exEime
−jβ1z + →exΓEime

jβ1z = →exEimRe[e−j(β1z−ωt) + Γej(β1z+ωt)]

= →exEim[cos(ωt − β1z) + Γcos(ωt + β1z)]

→H1 = →Hi + →Hr = →ey
Eim

Z1
e−jβ1z − →ey

ΓEim

Z1
ejβ1z = →ey

Eim

Z1
Re[e−j(β1z−ωt) − Γej(β1z+ωt)]

= →ey
Eim

Z1
[cos(ωt − β1z) − Γcos(ωt + β1z)]

→E1 = →Ei + →Er = →eyEime
−jβ1(zcosθi+xsinθi) − →eyEime

−jβ1(−zcosθr+xsinθr)

= →eyEimRe[e−j[β1(zcosθi+xsinθi)−ωt] − e−j[β1(−zcosθi+xsinθi)−ωt]]

= →eyEim[cos[ωt − β1(zcosθi + xsinθi)] − cos[ωt + β1(−zcosθ1 + xsinθi)]]

= →ey2Eimcos(ωt − β1zcosθi)cos(β1xsinθi)

→H1 = →Hi + →Hr = (− →excosθi + →ezsinθi)
Eim

Z1
e−jβ1(zcosθi+xsinθi) + (− →excosθr − →ezsinθr)

Eim

Z1
e−jβ1(−zcosθr+xsinθr)

=
Eim

Z1
Re[(− →excosθi + →ezsinθi)e

−j[β1(zcosθi+xsinθi)−ωt] + (− →excosθr − →ezsinθr)e
−j[β1(−zcosθr+xsinθr)−ωt]]

=
Eim

Z1
[(− →excosθi + →ezsinθi)cos[ωt − β1(zcosθi + xsinθi)] + (− →excosθr − →ezsinθr)cos[ωt + β1(−zcosθr + xsinθr)]

=
2Eim

Z1
[ →ezsinθisin(ωt − β1zcosθi)sin(β1xsinθi) − →excosθicos(ωt − β1zcosθi)cos(β1xsinθi)]



媒质1中的电场：

由于这个时候磁场已经十分复杂，我们不能再像之前那样把时间因子也写出来，所以仅使用复矢量进行运

算。媒质1中的磁场：

由此可见磁场在x轴成行波分布，在z轴成行驻波分布。

5、判断极化形式

（1）情况①

从4可以看出来，媒质1中的电场和磁场分量仍然只存在x和y分量，极化形式仍为线极化，且仍然为均匀平

面波。

（2）情况②、③

同（1）仍为线极化。且为均匀平面波。

（4）情况⑤

从4可以看出来，媒质1中的电场只存在y轴分量，为线极化。而磁场存在z轴和x轴的分量，并且在同一点如

x = 1的时候，幅值sinθisin(β1sinθi) ≠ cosθicos(β1sinθi)，并且因为z轴分量相位滞后x分量，所以为右旋椭

圆极化波。

（5）情况⑥、⑦

从4可以看出，电场极化形式为线极化，磁场已经复杂到看不出了……所以后面的指标就不再做计算赘述。

6、计算分界面电流密度和电荷密度

（1）情况①

由媒质2是理想导体的边界条件：

{

→E1 = →Ei + →Er = →eyEime
−jβ1(zcosθi+xsinθi) + →eyΓEime

−jβ1(−zcosθr+xsinθr)

= →eyEimRe[e−j[β1(zcosθi+xsinθi)−ωt] + Γe−j[β1(−zcosθi+xsinθi)−ωt]]

= →eyEim[cos[ωt − β1(zcosθi + xsinθi)] + Γcos[ωt − β1(−zcosθi + xsinθi)]]

= →eyEim[(1 + Γ)cos(ωt − β1xsinθi)cos(β1zcosθi) + (1 − Γ)sin(ωt − β1xsinθi)sin(β1zcosθi)]

→H1 = →Hi + →Hr = (− →excosθi + →ezsinθi)
Eim

Z1
e−jβ1(zcosθi+xsinθi) + ( →excosθr + →ezsinθr)

ΓEim

Z1
e−jβ1(−zcosθr+xsinθr)

= →ez
Eimsinθi

Z1
e−jβ1xsinθi(e−jβ1zcosθi + Γejβ1zcosθi) − →ex

Eimcosθi

Z1
e−jβ1xsinθi(e−jβ1zcosθi − Γejβ1zcosθi)

= →ez
Eimsinθi

Z1
e−jβ1xsinθi[(1 − Γ)e−jβ1zcosθi + Γ(ejβ1zcosθi + e−jβ1zcosθi)]−

→ex
Eimcosθi

Z1
e−jβ1xsinθi[(1 + Γ)e−jβ1zcosθi − Γ(ejβ1zcosθi + e−jβ1zcosθi)]

= →ez
Eimsinθi

Z1
e−jβ1xsinθi[(1 − Γ)e−jβ1zcosθi + 2Γcos(β1zcosθi)]−

→ex
Eimcosθi

Z1
e−jβ1xsinθi[(1 + Γ)e−jβ1zcosθi − 2Γcos(β1zcosθi)]

→en × →H1 = →Js

→en ⋅ →D = ε →en ⋅ →E1 = ρs



可知当前情况的两个参数可以计算：

→Js = − →ez × →H1 = − →ez × →ey
2Eim

Z1
cos(ωt)cos(β1z) = →ex

2Eim

Z1
cos(ωt)cos(β1z)

ρs = −ε →ez ⋅ →E1 = −ε →ez ⋅ →ex2Eimsin(ωt)sin(β1z) = 0

（2）情况②、③

由媒质2是理想介质的边界条件：

{

同（1）对两个参数进行计算：

ρs = −ε →ez ⋅ ( →E1 − →E2) = −ε →ez ⋅ →ex[Eim[cos(ωt − β1z) + Γcos(ωt + β1z)] − τEime
−jβ2z] = 0

（3）情况⑤

同（1）对两个参数进行计算：

ρs = −ε →ez ⋅ →E1 = −ε →ez ⋅ →ey2Eimcos(ωt − β1zcosθi)cos(β1xsinθi) = 0

7、计算功率密度与平均功率密度

（1）情况①

电磁波的功率密度一般指单位面积上的功率，即为坡印廷矢量：

可见坡印廷矢量也是驻波的形式。

电磁波的平均功率密度也即是平均坡印廷矢量，为了运算简便，我们使用前面④中推到过程使用过的复矢

量形式进行运算：

→H1

∗
= →ey

Eim

Z1
(e−jβ1z + ejβ1z)

计算恰好符合坡印廷矢量是驻波的特点：能量无法传递。

（2）情况②、③

→en × ( →H1 − →H2) = →Js

→en ⋅ ( →D1 − →D2) = ε →en ⋅ ( →E1 − →E2) = ρs

→Js = − →ez × →H1 = − →ez × →ey[
Eim

Z1
[cos(ωt − β1z) − Γcos(ωt + β1z)] −

τEim

Z1
cos(ωt − β2z)]

= →ex
Eim

Z1
[cos(ωt − β1z) − Γcos(ωt + β1z) − τcos(ωt − β2z)]

→Js = − →ez × →H1 = − →ez ×
2Eim

Z1
[ →ezsinθisin(ωt − β1zcosθi)sin(β1xsinθi)

− →excosθicos(ωt − β1zcosθi)cos(β1xsinθi)] = →ey
2Eim

Z1
cosθicos(ωt − β1zcosθi)cos(β1xsinθi)

→S =
1

2
→E1 × →H1 =

1

2
→ex2Eimsin(ωt)sin(β1z) × →ey

2Eim

Z1
cos(ωt)cos(β1z)

= →ez2
E 2

im

Z1

1

2
sin(2ωt)

1

2
sin(2β1z) = →ez

E 2
im

2Z1
sin(2ωt)sin(2β1z)

→Sav =
1

2
Re[ →E1 × →H1

∗
] =

1

2
Re[ →exEim(e−jβ1z − ejβ1z) × →ey

Eim

Z1
(e−jβ1z + ejβ1z)

= →ez
E 2

im

2Z1
Re[e−j2β1z − ej2β1z] = →ez

E 2
im

Z1
× 0 = 0



为了节省篇幅，从此之后都省略透射波的功率密度和平均功率密度，因为方法和在媒质1中类似且更简单。

→H1

∗
= →ey

Eim

Z1
(ejβ1z − Γe−jβ1z)

可以看出来这种行驻波形式能够将能量传递出去，只是相对于纯行波会更小，为(1 − Γ2)倍。

（3）情况⑤

观察表达式可知，对于垂直极化波斜入射理想导体的情况，在时间上平均后只有在x轴方向有能量传播，z

轴方向没有能量传播。

二、全反射与全透射

而对于电磁波入射分界面又有两种特殊情况存在：全反射和全投射。下面来分析这两种问题以及他们产生

的原因。

1、全反射
全反射是这两种情况中更简单的那一种。全反射通俗的来讲就是折射角大于90°的情况。据此建立下列方程

组：

→S =
1

2
→E1 × →H1 =

1

2
→exEim[cos(ωt − β1z) + Γcos(ωt + β1z)] × →ey

Eim

Z1
[cos(ωt − β1z) − Γcos(ωt + β1z)]

= →ez
E 2

im

2Z1
[cos(ωt − β1z)2 − Γ2cos(ωt + β1z)2]

→Sav =
1

2
Re[ →E1 × →H1

∗
] =

1

2
Re[ →exEim(e−jβ1z + Γejβ1z) × →ey

Eim

Z1
(ejβ1z − Γe−jβ1z)]

= →ez
E 2

im

2Z1
Re[−Γe−j2β1z + Γej2β1z + 1 − Γ2] = →ez

E 2
im

2Z1
(1 − Γ2)

→S =
1

2
→E1 × →H1 =

1

2
→ey2Eimcos(ωt − β1zcosθi)cos(β1xsinθi)×

2Eim

Z1
[ →ezsinθisin(ωt − β1zcosθi)sin(β1xsinθi) − →excosθicos(ωt − β1zcosθi)cos(β1xsinθi)]

=
2E 2

im

Z1
[ →exsinθi

sin(2ωt − 2β1zcosθi)

2

sin(2β1xsinθi)

2
+ →ezcosθicos

2(ωt − β1zcosθi)cos
2(β1xsinθi)]

=
2E 2

im

Z1
[ →ex

sinθi

4
sin(2ωt − 2β1zcosθi)sin(2β1xsinθi) + →ezcosθicos

2(ωt − β1zcosθi)cos
2(β1xsinθi)]

→H1

∗
= (− →excosθi + →ezsinθi)

Eim

Z1
e−jβ1(zcosθi+xsinθi) + (− →excosθr − →ezsinθr)

Eim

Z1
e−jβ1(−zcosθr+xsinθr)

= (− →excosθi + →ezsinθi)
Eim

Z1
ejβ1(zcosθi+xsinθi) + (− →excosθr − →ezsinθr)

Eim

Z1
ejβ1(−zcosθr+xsinθr)

→Sav =
1

2
Re[ →E1 × →H1

∗
] =

1

2
Re[[ →eyEime

−jβ1(zcosθi+xsinθi) − →eyEime
−jβ1(−zcosθr+xsinθr)]×

[(− →excosθi + →ezsinθi)
Eim

Z1
ejβ1(zcosθi+xsinθi) + (− →excosθr − →ezsinθr)

Eim

Z1
ejβ1(−zcosθr+xsinθr)]]

=
E 2

im

2Z1
Re[( →ezcosθi − →exsinθi)e

−j2β1zcosθi + (− →ezcosθi − →exsinθi)e
j2β1zcosθi + →ex2sinθi]

=
E 2

im

2Z1
[( →ezcosθi − →exsinθi)cos(2β1zcosθi) − ( →ezcosθi + →exsinθi)cos(2β1zcosθi) + →ex2sinθi]

= →ex
E 2

imsinθi

Z1
[1 − cos(2β1zcosθi)]



解方程组可得：sinθi = √μr2εr2

√μr1εr1
，因为0 ≤ sinθi ≤ 1，所以√μr1εr1 ≥ √μr2εr2，而我们定义折射率大的介质

叫做光密介质，所以要发生全反射需要满足下面两个条件：

{

既然是全反射，那么极化、合场、电流密度、电荷密度、功率等和前面斜入射理想导体比较类似，就不过

多赘述了。

2、全透射
相反的，全透射会稍微麻烦一点，我们需要对反射系数进行分析。假设入射波为平行极化波，令：

Γ⊥ =
Z1cosθi − Z2cosθt

Z1cosθi + Z2cosθt
= 0⟹ Z1cosi = Z2cosθt

因为实际全透射时大多时候两侧介质的磁导率相同，假设两侧介质磁导率都为μ0，建立以下方程组：

对方程组进行化简求解：

由此可见入射波方向是和透射波方向垂直的，接下来继续对θi进行化简：

n1sinθi = n2sinθt⟹
sinθi

sinθt
=

sinθi

cosθi
= tanθi =

n2

n1

到此我们推导出了全透射时的入射角，这个角度称为布儒斯特角，总结一下全透射的条件：

{

当入射角满足tanθi = n2

n1
时但不满足入射波为水平极化波时（如垂直极化波的情况），这时既有反射也有透

射，我们对反射波进行分析。计算反射系数：

Γ⊥ =
Z2cosθi − Z1cosθt

Z2cosθi + Z1cosθt
=

n1cosθi − n2sinθi

n1cosθi + n2sinθi
=

n2
1 − n2

2

n2
1 + n2

2

=
ε1 − ε2

ε1 + ε2

随后参考前面的情况⑥。

若入射波为圆极化波，根据极化的分解原理，一定可以分解为一个垂直极化波和一个水平极化波的叠加，

水平极化波的部分全投射，而垂直极化波部分透射，这就导致透射过去的垂直极化幅值小于水平极化，叠

加后成为椭圆极化波。

⎧⎪⎨⎪⎩n1sinθi = n2sinθt
sinθt = 1
n1 = √μr1εr1

n2 = √μr2εr2

sinθi ≥ √μr2εr2

√μr1εr1

√μr1εr1 ≥ √μr2εr2

⎧⎪⎨⎪⎩Z1cosi = Z2cosθt

Z1 = √ μ0

ε1
,n1 = √μr1εr1 = √εr1

Z2 = √ μ0

ε2
,n2 = √μr2εr2 = √εr2

n1sinθi = n2sinθt

{ ⟹ {

⇒ sinθicosθi = sinθtcosθt⟹ sin2θi = sin2θt

⇒ {

√ μ0

ε0εr1
cosθi = √ μ0

ε0εr2
cosθt

n1sinθi = n2sinθt

n2cosθi = n1cosθt
n1sinθi = n2sinθt

θi = θt(舍弃)
2θi + 2θt = π⟹ θi + θt = π

2

入射波为水平极化波
tanθi = n2

n1



三、均匀平面波在空间中的传播分析

均匀平面波在空间中的传播分析主要包括电场和磁场的复矢量表达、瞬时值表达、各种参数如波数、相

速、能量密度、坡印廷矢量、波阻抗、衰减常数、相位常数、趋肤深度、极化形式等。下面主要分成两类

进行分析：在理想介质中传播和在导电媒质中传播。

1、均匀平面波在理想介质中的传播

定义最核心的参量Z = √ μ
ε且有关系

→E = Z →H × →en，所以当给定空间中一电场或磁场，知道了电磁波传播方

向，就可以通过这个关系算出来另一半。特殊的，在空气中Z = 120π ≈ 377Ω。在理想介质中存在等式

β = k = ω√με，且kλ = 2π。对于波形上的一个点，其相位固定，即ωt − kz = const。对其进行求导变形可

以得到相速：

wdt − kdz = 0⟹ vp =
dz

dt
=

ω

k
=

ω

β

这里埋了一个伏笔，因为在理想介质中波数确实和相位常数相等，但是到了导电媒质中就不是这样了，这

个时候k变成了复数，相速随电磁波的频率变化而发生变化，于是便产生了色散现象。

电场的能量为we = 1
2
→D ⋅ →E = 1

2 ε
→E 2 =

ε| →E|2

2 ，类似的wm =
μ| →H|2

2 ，平均能量密度则是两者的二分之一倍。

坡印廷矢量，也是功率密度 →S = 1
2
→E × →H，平均坡印廷矢量，也是平均功率密度为 1

2 Re[ →E × →H ∗]。

2、均匀平面波在导电媒质中的传播
在导电媒质中最核心的区别就是在导电媒质中多了损耗，这里先补充一下欧姆损耗、极化损耗和磁化损耗

的概念。

（1）欧姆损耗

对于电导率σ ≠ 0的情况，根据复数形式麦克斯韦方程组第一方程：

εc称为复介电常数。这个称为欧姆损耗，并且损耗角表示为tanδσ = σ
ωε。至于为什么会产生损耗：

k = ω√μεc = ω√μ(ε − j
σ

ω
)

此时k变为复数，我们令γ = jkc = α + jβ，则相位因子e−γz = e−(α+jβ)z = e−αz ⋅ e−jβz。我们可以看到相比于

理想介质中，相位因子多了一项e−αz，这一项随z的值增大而减小，预示着传播距离越远衰减程度越大，所

以称α为衰减系数。由此可以定义一个新的参量交做趋肤深度，趋肤深度表示电磁波在介质中衰减 1
e
倍时传

播的距离，用δ表示。可以简单的列出方程e−αδ = 1
e
⟹ δ = 1

α

计算α和β：

解出这个方程组就可以计算出α和β的值，由于形式过于复杂，在这里就不展示了。下面直接探究两个特殊

情况：

①良导体

∇ × →H = J0 + σ →E + jωε →E = J0 + jω(ε − j
σ

ω
) →E = J0 + jωεc →E

⇒ εc = ε − j
σ

ω

(α + jβ)2 = [jω√μ(ε − j
σ

ω
)]2

⇒ α2 − β2 + j2αβ = −ω2με + jωμσ

⇒ {α
2 − β2 = −ω2με

2αβ = ωμσ



若满足 σ
ωε

≫ 1，则称该导体为良导体，因为导电能力接近理想导体。良导体情况下α和β满足以下关系：

②弱导体

若满足 σ
ωε

≪ 1，则称该导体为弱导体，因为导电能力接近理想介质。良导体情况下α和β满足以下关系：

（2）极化损耗与磁化损耗

由于两种情况比较少，所以简单介绍以下。

极化损耗情况下有：

磁化损耗情况下有：

{

（3）电磁波的极化

极化是对电磁波在空间中固定某个位置的电场矢量末端的运动轨迹的分类规定，分为线极化、圆极化和椭

圆极化。现在假设某点电场矢量运动平面为xOy平面。

①线极化

只有满足以下条件，极化才为线极化：

Φy − Φx = 0或± π

②圆极化

只有满足以下条件，极化才为圆极化：

{

③椭圆极化

不满足以上情况的就基本上是椭圆极化波了。

④极化方向判断

当Φy > Φx时，为左旋极化波，相反的为右旋极化波，值得一提的是极化方向概念仅对圆极化和椭圆极化而

言。对于线极化来说若相位差等于0则为一三象限极化，若为±π则为二四象限极化。

四、含边界的静态场问题

⎧
⎨⎩
α = β ≈ √πfμε

Z ≈ √ πfμ

σ
ej

π
4

⎧⎪⎨⎪⎩α ≈ σ
2
√ μ

ε

β = ω√με

Z ≈ √ μ

ε

⎧⎪⎨⎪⎩εc = ε − jε′

εc = ε − j(ε′ + σ
ωε )

tanδε = ε′

ε

μc = μ − jμ′

tanδμ = μ′

μ

Eym = Exm

Φy − Φx = ± π
2



对于含边界的静态场问题来说，最核心的解决方法就是抓住：①边界条件或位函数的边界条件；②泊松方

程或拉普拉斯方程。之所以能够凭借这两个条件就能够求解静态场是因为唯一性定理的存在。

1、唯一性定理
边界上的问题总共分为三类：狄里赫利问题、纽曼问题和混合边值问题。他们的情况分别是：知道位函数

在边界上各个点的值，知道位函数在各个点的导数值，知道一部分点的值和一部分点的导数值。而唯一性

定理的阐释就是：

这个定理就是我们求解有边界存在时的静态场问题的依据。

2、位函数φ的边界条件、标量泊松方程与标量拉普拉斯方程

建立一下方程组：

{

对方程组进行求解得出位函数φ的边界条件：

∇ ⋅ (ε1
→E1 − ε2

→E2) = ∇ ⋅ (ε2∇φ2 − ε1∇φ1) = ε2
∂φ2

∂n
− ε1

∂φ1

∂n
= ρs

由位函数的定义和电场计算位函数的方法，取分界面上无线短的积分路径时，可以近似认为电势差等于0，

也就是φ1 = φ2。

建立一下方程组求解标量泊松方程：

{

求解：

∇ ⋅ (ε →E) = ε∇ ⋅ (−∇φ) = ρ⟹ ∇2φ = −
ρ

ε

这就是我们的泊松方程，其中∇2为标量拉普拉斯算子，等效为：

∇2φ =
∂ 2φ

∂x2
+

∂ 2φ

∂y2
+

∂ 2φ

∂z2

所以边界条件和泊松方程和起来：

若边界面另一侧为理想导体，则不存在 →E2和ρ，方程组可化简为：

其中∇2φ = 0成为标量拉普拉斯方程。

靠以上这两个方程组就可以进行含边界的静电场问题求解，如电容器中间放置一块理想导体板，求电容器

在场域V的边界面上S上给定电位函数φ的值或电位函数φ的方向导数
∂φ

∂n
的值，

则电位函数φ的泊松方程或拉普拉斯方程在场域V内具有唯一解。

∇ ⋅ ( →D1 − →D2) = ρs
→E = −∇φ

∇ ⋅ →D = ρ

→E = −∇φ

⎧⎪⎨⎪⎩ε2
∂φ2

∂n − ε1
∂φ1

∂n = ρs
φ1 = φ2

∇2φ = ∂ 2φ

∂x2 + ∂ 2φ

∂y2 + ∂ 2φ

∂z2 = − ρ

ε

⎧⎪⎨⎪⎩ε
∂φ
∂n = −ρs

φ = const

∇2φ = ∂ 2φ

∂x2 + ∂ 2φ

∂y2 + ∂ 2φ

∂z2 = 0



间的电位分布以及理想导体板表面电荷密度的等，都可以通过上述方程组外加边界条件灵活求出各种参

量。

3、矢量磁位 →A、矢量泊松方程与矢量拉普拉斯方程

与静电场类似的，要求解含边界的静磁场的问题就要利用位函数来求解。

（1）矢量磁位

根据亥姆赫兹定理，任何一个无散场都可以由一个矢量场的旋度进行表示。而静磁场恰好是无散场，由此

静磁场就必然可以由一个矢量场的旋度场进行表示。我们称这个矢量场为矢量磁位。但是不同于位函数φ，

还要确定矢量磁位的散度才能完全确定矢量磁位。在静态场中我们认为规定矢量磁位的散度为零，于是便

有了下列方程组：

{

将这个条件代入方程∇ × →H = →J可以得到矢量泊松方程：∇2 →A = μ →J。其中∇2称为矢量拉普拉斯算子，可以

展开为以下形式：

∇2 →A = →ex∇2Ax + →ey∇
2Ay + →ez∇

2Az

求解泊松方程可以得到电流元产生的矢量磁位：

d →A =
μ

4π

→JdV

R

类似静电场，矢量磁位也存在边界条件，把边界条件和泊松方程合并在一起可以得到方程组：

若是在无源区域，则泊松方程退化为拉普拉斯方程：∇2 × →A = 0

（2）标量磁位

对于无源区域，因为∇ × →H = 0，所以也可以使用一个标量函数来表示 →H，令 →H = −∇φm。由于这种情况和

点位函数φ情况类似，只是把边界条件中的ε更换为μ即可。

五、求解电容、电感和电阻类问题

这一类问题重点在于抓住三者的定义，掌握基本的假设技巧，另外，在求解电阻时可以使用静态比拟法来

简化计算。

1、电容类问题
电容的基本定义式为C = Q

U
，表征了电容器储存电荷的能力。对于孤立导体而言，它的电容就为C = q

φ
。

求解电容问题，通常先假设电荷量，再计算电势或电压，最后再相除得到电容。除了常见的平行板电容

器，下面我们主要分析两种特殊类型的：双线传输线和同轴线。

（1）双线传输线

→B = ∇ × →A

∇ ⋅ →A = 0

⎧⎪⎨⎪⎩ →A1 = →A2

→en × ( ∇× →A1

μ1
− ∇× →A2

μ2
) = →Js

∇2 →A = →ex∇2Ax + →ey∇2Ay + →ez∇2Az = μ →J



现假设两根完全一样的导线平行放置，导线直径为a，两导线轴线之间的间距为D，并且D ≫ a，假设周围

介质为空气。试求传输线单位长度的电容。

该题的解决办法完美的体现了先假设电荷或电量，再计算电压，最后再计算电容的思路。

（2）同轴线

现假设同轴线的内导线半径为a，外导体的内半径为b，内外导体间填充着介电常数为ε的均匀电介质，求同

轴线单位长度的电容。

类似的，还有多导体电容求解问题，但这个时候一般不直接使用电容定义式进行计算，而是给出部分测量

值进行计算。这个时候应更加注意不同电容之间的串并联，列出方程组进行求解。

2、电感类问题
电感定义式为L = Ψ

I
。而电感类问题之所以比电容类问题复杂是因为存在内自感，外自感和互感三种情

况。当题目要求求电感时也就是求内自感和外自感的和，求互感时会专门说明要求求互感。下面就同轴线

和双线传输线进行分析。

（1）同轴线

设同轴线内导体半径为a，外导体内半径为b，外导体厚度可忽略不计。内外导体间为空气，磁导率为μ0，

内外导体为金属铜，磁导率也为μ0。计算同轴线单位长度的电感。

假设两个导线一个带正电荷，一个带负电荷。并且假设单位长度的导线分别带ρl和− ρl的电荷。

并且假设导线沿y轴排列。

由高斯定理： →E = →ex(
1 ⋅ ρl

2πεx ⋅ 1
−

ρl

2πε(D − x) ⋅ 1
)

对电场进行积分得到电压：U = ∫
D−a

a

→E ⋅ →exdx =
ρl

2πε
∫

D−a

a

(
1

x
−

1

D − x
)dx ≈

ρl

πε0
ln

D

a

所以平行传输线单位长度的电容为：C =
ρl

U
≈

πε0

ln( D
a )

F/m

类似的，假设内导体单位长度的电荷量为ρl，外导体单位长度的电荷量为ρl。

由高斯定理，均匀电介质中的电场强度为： →E = →eρ、
1 ⋅ ρl

2περ ⋅ 1
= →eρ

ρl

2περ

在同轴线径向上积分，算出电压：U = ∫
b

a

→E ⋅ →eρdρ =
ρl

2πε
∫

b

a

1

ρ
dρ =

ρl

2πε
ln

b

a

最后计算电容：C =
Q

U
=

ρl
ρl

2πε ln
b
a

=
2πε

ln b
a

F/m



接下来对电流交链这样一个通俗说法做一个严谨的数学论证：

所以由此来看，除了使用磁链来计算电感，还可以使用磁场能量来计算电感，而且似乎看起来还更简单？

（2）双线传输线

双线传输线除了两根导线的内自感，内自感与同轴线内导体的内自感一模一样，还有外自感，而外自感就

是两个导线电流叠加的磁感应强度产生的磁链产生的自感。计算方式与同轴线外自感几乎一模一样，也可

以使用磁场能量的方式进行计算。这里就不过多赘述了。

除了对自感进行计算，还有对互感计算的，互感是在两个带电体之间电流和磁感应强度的相互交链，理论

上可以证明两个互感是相等的。所以对于当某者的互感比较难求时，比如环形电流对直导线电流的互感，

就可以转过来求直导线电流对环形电流的互感。

3、电阻类问题
电阻类问题属于是稳恒电场的问题。可以使用电阻的定义式R = U

I
进行求解，也可以使用静电比拟法，把

电容中的介电常数更换为σ就有了C = G = 1
R
，而这种方法则问题又回归到了求解电容上。下面举一个例

子：

类似于计算电容，计算电感时我们假设电流大小，再计算出磁链大小，最后利用定义式求解电感。

假设同轴线中的电流为I，因为外导体厚度可忽略不计，所以电流可以看作只存在于内导体。

先计算内感，由安培环路定理： →Bi = →eϕ

π2ρ2

π2a2 Iμ0

2πρ
= →eϕ

ρIμ0

2πa2

随后计算半径为ρ时穿过单位面积的磁通：dΦ = | →Bi|dS =
ρIμ0

2πa2
dρ ⋅ 1 =

ρIμ0

2πa2
dρ

根据磁链的定义，他其实为n个回路的磁通之和。在这个问题中这个n个回路就是半径不同时的情况，并且，这里

也不是简单的线性求和，而是加权求和，权重值就是当前磁通与最大磁通的比，也就是当前包围的电流和总电流

比值，换句话说就是电流的交链程度，交链程度听起来很抽象？后面会通过严谨的数学表达式证明。

所以内磁通链Ψi = ∫
a

0

Iμ0ρ
3

2πa4
dρ =

μ0I

8π

内自感：Li =
Ψi

I
=

μ0

8π

接下来计算外自感： →B0 = →eϕ
Iμ0

2πρ
⟹ dΨo = | →Bo|dS =

Iμ0

2πρ
dρ⟹ Ψo = ∫

b

a

dΨo⟹ Ψo = ∫
b

a

μ0I

2πρ
dρ

⇒ Ψo =
μoI

2π
ln

b

a
⟹ Lo =

Ψo

I
=

μ0

2π
ln

b

a

所以总的电感：L = Li + Lo =
μ0

8π
+

μ0

2π
ln

b

a

首先需要明确我们的证明目标，根据定义，磁链就是多匝的磁通之和，所以我们的任务是证明加权系数的存在。

拿上面的同轴线进行举例，我们先来计算一下它内导体内部的磁能。

首先计算内导体内部的磁场强度，由安培环路定理： →H = →eϕ

π2ρ2

π2a2 I

2πρ
= →eϕ

ρI

2πa2

再来计算内导体内部磁能密度：wm =
1

2
μ| →H|2 =

ρ2I 2μ

8π2a4

计算磁能：Wm = ∫
V

wmdV = ∫
V

ρ2I 2μ

8π2a4
dV =

I 2μ0

8π2a4
∫

a

0
ρ22πρdρ =

I 2μ0

16π

由于磁场能量又可以通过电感进行计算：Wm =
1

2
LI 2

联立两个方程可以解出：L =
μ0

8π
，这与我们用磁链计算出来的电感相同，接下来用它取反推磁链。

令权重系数为A，则Ψ = LI =
μ0I

8π

积分反推
⟹

μ0I

8π
= ∫

a

0

μ0I

2πa4
ρ3dρ = ∫

a

0

AdΦ⟹
μ0I

2πa4
ρ3 = A

ρIμ0

2πa2

⇒ A =
ρ2

a2
。所以才产生了这样一个权重系数，通俗来看就是与磁通交链的电流大小占比。



半径为a的导体球埋入大地中，大地的电导率为σ，求导体球的接地电阻。

而如果使用经典比拟法：

六、镜像法

1、镜像法
镜像法共分为一下几种情况分为一下几种情况

①接地导体板

等效为：关于导体板对称的地方有一个电荷大小相等，且相邻区域的电荷符号相反。

②接地导体球

等效为：距离球心一条直线上靠近电荷的 a2

d
的地方由电荷大小为

−aq

d
的电荷。

③不接地导体球

等效为：在②的基础上多了球心位置的电荷量与q ′相等符号相反的镜像电荷。

④导体圆柱面

等效为：距轴线 a2

d
的地方有个大小相等符号相反的线电荷。

假设流过导体球的电流为I，则与大地接触的扩散出去的半球面的电流密度为： →J = →eρ
I

2πρ2

计算导体球与大地无穷远处的电压： →E =
→J

σ
= →eρ

I

2πρ2σ
⟹ U = ∫

∞

0

I

2πρ2σ
dρ =

I

2πσa

所以电阻等于：R =
U

I
=

1

2πσa

假设导体球带电荷Q，根据高斯定律计算场强： →E = →eρ
Q

ε2πr2

计算电压：U =
Q

2επ
∫

∞

a

1

r2
dr =

Q

2επa

所以电容：C =
Q

U
= 2πεa

使用静电比拟法得到：G = 2πσa

则R =
1

G
=

1

2πσa
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